Molecular Packing Modes. Part IX. ${ }^{1}$ Crystal and Molecular Structures of Pentafluorobenzoic Acid and Mesitoic Acid

By V. Benghiat and L. Leiserowitz,* Department of Chemistry, Weizmann Institute of Science, Rehovot, Israel

The crystal structure of pentafluorobenzoic acid has been solved from 1598 three-dimensional counter data, and refined by least-squares to $R 0.04$. Crystals are triclinic, space group $P \overline{1}$, with $Z=2$ in a unit cell of dimensions: $a=7.925, b=8.637, c=6.262 \AA, \alpha=97.55, \beta=89.65$, and $\gamma=121.86^{\circ}$. Values of σ for bond lengths are $0.002 \AA$. The angle between the planar pentafluorophenyl group and the carboxy-group is 29.8°. The molecules form cyclic hydrogen-bonded dimers ($\mathrm{OH} \cdots \mathrm{O} 2 \cdot 668 \mathrm{~A}$) in which the $\mathrm{C}-\mathrm{OH}$ and $\mathrm{C}=\mathrm{O}$ bond lengths are 1.278 and 1.221 Å.

The structure of mesitoic acid was refined similarly to $R 0.05$ for 2060 reflections. Crystals are monoclinic, space group $C 2 / c, Z=8$, in a unit cell of dimensions: $a=15 \cdot 142(1), b=7 \cdot 026(1), c=17 \cdot 439(1) \AA, \beta=$ $89.35(1)^{\circ}$. The mean σ values of the heavy- and hydrogen-atom co-ordinates are 0.001 and $0.03 \AA$. The angle between the mesityl and carboxy-groups is $48 \cdot 4^{\circ}$. The molecules form cyclic hydrogen-bonded pairs $(\mathrm{OH} \cdots \mathrm{O}$ $2.640 \AA$) in which the $\mathrm{C}-\mathrm{O}$ bond lengths are nearly equal (1.275 and $1.248 \AA$).
The molecular dimensions and the packing arrangements of both structures are discussed.

The structural analyses of pentafluorobenzoic acid and mesitoic acid were undertaken as part of a study on the packing modes of carboxylic acids. Specifically we wished to consider those benzoic acids in which the intramolecular environment of each of the oxygen atoms of the carboxy-group was identical: in molecules of such a type there exist two equivalent orientations (I) and (II) mutually indistinguishable unless incorporated into a geometrical framework such as a crystal lattice. The question then arises as to what extent intermolecular forces could determine the degree of orientational disorder of the carboxy-dimer, i.e. the random incorporation of (I) or (II) at a centrosymmetric lattice point in the crystal.

[^0]Pentafluorobenzoic acid (III) was chosen as the $\mathrm{C}-\mathrm{F} \cdot \mathrm{O}$ interaction was assumed to be weak, in comparison say to the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction, and so

(I)

(III)
would exert little influence on the orientation of the carboxy-dimer.

In mesitoic acid (IV), the van der Waals radii of the ortho-substituted methyl groups were considered to be sufficiently large to prevent any close approach of neighbouring atoms to the cyclic acid pair, and so isolate it from intermolecular contacts.

On completion of the structural determination of mesitoic acid we learned that the crystal structure had been studied by Florencio and Smith. ${ }^{2}$

(III)

EXPERIMENTAL
Crystals of (III), m.p. $103-104{ }^{\circ} \mathrm{C}$, were obtained by slow evaporation of a light petroleum-toluene solution. The triclinic crystals exhibited the $\{100\},\{001\},\{1 \overline{1} 0\}$, and \{İ20\} forms.
(IV), m.p. $149-150^{\circ} \mathrm{C}$, was crystallised by slow evaporation of n -pentane solution. The monoclinic crystals showed the $\{100\},\{110\},\{331\}$, and $\{001\}$ forms.
Crystal Data.-(i) Pentafluorobenzoic acid (III). $\mathrm{C}_{7} \mathrm{HF}_{5} \mathrm{O}_{2}, M=212 \cdot 1$. Triclinic, $a=7.925(1), b=8.637(1)$, $c=6.262(1) \AA, \alpha=97.55(1), \beta=89.65(1), \gamma=121.86(1)^{\circ}$, $U=359.8 \AA^{3}, D_{\mathrm{m}}=1.94, Z=2, D_{\mathrm{c}}=1.957, F(000)=$ 208. Space group P I. $\mu\left(\mathrm{Cu}-K_{\alpha}\right)=21 \mathrm{~cm}^{-1}$.
(ii) Mesitoic acid (IV). $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{2}, M=162 \cdot 2$. Monoclinic, $a=15 \cdot 142(1), b=7 \cdot 026(1), c=17 \cdot 439(1) \AA, \beta=$ $89 \cdot 35(1)^{\circ}, U=1855 \cdot 3 \AA^{3}, D_{\mathrm{m}}=1 \cdot 16, Z=8, D_{\mathrm{c}}=1 \cdot 161$, $F(000)=688$. Space group $C 2 / c$ from systematic absences: $h k l$ for $h+k$ odd, $h 0 l$ for l odd. $\quad \mu\left(\mathrm{Cu}-K_{\alpha}\right)=\mathbf{6 . 6} \mathrm{cm}^{\mathbf{- 1}}$.

The cell constants of both compounds were determined by a least-squares analysis of high-angle spectra ($2 \theta>120^{\circ}$) measured on a General Electric goniostat with $\mathrm{Cu}-K_{\alpha}$ radiation.

Data Collection.-Crystals of (III) were hygroscopic and so the specimen, of dimensions $0.38 \times 0.32 \times$ $0.44 \times 0.50 \mathrm{~mm}$ (bounded by faces 001, $00 \overline{\mathrm{I}}, 100$, $\overline{1} 00, \overline{\mathrm{I}} 10,1 \overline{1} 0, \overline{\mathrm{I}} 20,1 \overline{2} 0$), was sealed in a Lindemann glass capillary. The diffraction data $I(h k l)$ were measured on a General Electric goniostat by the stationary-crystal-stationary-counter technique with nickel-filtered $\mathrm{Cu}-K_{\alpha}$ radiation $(\lambda=1.5418 \AA)$. The intensity and background were each measured for a period of 10 s ; for the background measurement the Eulerian cradle was offset in ω by 1°. 1598 Independent reflections were recorded including 206 reflections which were treated as unobserved.

A crystal of (IV) of dimensions $0.47 \times 0.46 \times 1.28 \times$ 0.33 mm (bounded by faces $\overline{\mathrm{I}} 00,100,1 \overline{1} 0, \overline{\mathrm{I}} 10,110, \overline{\mathrm{I}} 10,001$, $001 \overline{1}$), was mounted along a^{*} on the General Electric goniostat. The data $I(h k l)$ and $I(h \hbar l)$ were collected by a similar procedure to that already described. To minimise the effect of extinction, the strong reflections were measured

[^1]with a second smaller crystal; 2060 independent, including 73 unobserved, reflections were measured.
Absorption corrections ${ }^{3}$ were applied to both compounds in the data reduction routines. Treatment of data and the weighting scheme have been described previously. ${ }^{4}$
Structure Determination and Refinement.-The molecular structure of (III) was assumed to consist of a planar hydrogen-bonded dimer from which 36 plausible packing arrangements were generated by SEARCH. ${ }^{5}$ One of these models achieved the lowest R of 0.37 when tested in a rigid-body least-squares programme with a limited number of low-order reflections. This model was further refined by the rigid-body method in which the restriction on molecular planarity was relaxed, and the carboxy- and phenyl groups were allowed to rotate independently about the exocyclic $\mathrm{C}-\mathrm{C}$ bond; R was reduced to $0 \cdot 22$. The model was further refined with individual atomic positional and anisotropic thermal parameters. The final R was 0.040 and $R^{\prime}{ }_{0.008}\left[R^{\prime}=\Sigma w\left(k F_{0}{ }^{2}-\left|F_{\mathrm{c}}\right|^{2}\right)^{2} / \Sigma w k^{4} F_{0}{ }^{4}\right]$. A difference-Fourier synthesis, based on all nonhydrogen atoms was computed in the plane at the carboxy-acid pair, and clearly located the hydroxylic hydrogen (Figure 1).

Figure 1 Pentafluorobenzoic acid: electron-density differenceFourier synthesis in the plane of the carboxy-dimer. Full, dashed, and dotted lines correspond to positive, zero, and negative contours at intervals of $0.05 \mathrm{e}^{-3}$

An E map, based on 150 reflections of mesitoic acid with signs determined by the symbolic addition method, ${ }^{6}$ revealed all the carbon and oxygen positions. This model was refined to $R 0 \cdot 13$. At this stage the hydrogen atoms of the three methyl groups were located on electron-density difference-Fourier maps (Figure 2); these hydrogen atoms, together with the two aromatic hydrogen atoms, which were inserted at chemically reasonable positions, were refined with isotropic temperature factors whereupon R dropped to 0.052 . The $\mathrm{C}-\mathrm{O}$ bond lengths being nearly equal (1.287 and $1.257 \AA$), ' half hydrogens ' were attached to each of the oxygen atoms at $1 \AA$ along the $\mathrm{O} \cdot \mathrm{O}$ O line, and their positional and thermal parameters refined. From the final least-squares refinement cycle the two 'half hydrogens,' $\frac{1}{2} \mathrm{H}(1)$ and $\frac{1}{2} \mathrm{H}(2)$, were located $1 \cdot 1$ and $0.9 \AA$ from their nearest oxygen atoms with a temperature factor of $0.14 \AA^{2}$. The two corresponding $\mathrm{C}-\mathrm{O}$ bond lengths were then 1.275 and $1.248 \AA$. A difference-Fourier synthesis, based on all but the 'half hydrogens' was computed in the plane of the carboxy-dimer (Figure 3) and showed a disordered electron-density distribution. The final agreement factors for the 2060 reflections were $R 0.050$ and $R^{\prime} 0.009$.
${ }^{4}$ S. E. Filippakis, L. Leiserowitz, and G. M. J. Schmidt, J. Chem. Soc. (B), 1967, 290.
${ }^{5}$ D. Rabinovich and G. M. J. Schmidt, Nature, 1966, 211, 1391.
${ }^{6}$ J. Karle and I. L. Karle, Acta Cryst., 1966, 21, 849.

The observed and calculated structure factors of the final cycle of each compound are listed in Supplementary Publication No. SUP 20329 (5 pp., 1 microfiche).* The scattering factor curves used for hydrogen, carbon and oxygen, and fluorine were taken from refs. $\mathbf{7 - 9}$.

Figure 2 Mesitoic acid: electron-density difference-Fourier maps showing the methyl hydrogen atoms of the three methyl groups, contoured at intervals of $0.05 \mathrm{e}^{\mathbf{8}}{ }^{-3}$

Figure 3 Mesitoic acid: electron-density difference-Fourier synthesis in the plane of the carboxy-dimer, contoured at intervals of $0.05 \mathrm{e}^{-3}$

RESULTS AND DISCUSSION

Tables 1 and 2 list the experimental positional and thermal parameters of pentafluorobenzoic acid and mesitoic acid, together with their estimated standard deviations.

Molecular Shape.-Pentafluorobenzoic acid is not planar; the carboxy-group is twisted out of the plane of the benzene ring by $29 \cdot 8^{\circ}$ (Table 3). By comparison, in the mono-ortho-substituted fluorobenzoic acid ${ }^{10}$ the angle is 6.7°. The intramolecular $\mathrm{O} \cdots \mathrm{F}$ contacts in pentafluorobenzoic acid are $2.675[\mathrm{O}(1) \cdots \mathrm{F}(2)]$ and $2.655 \AA[\mathrm{O}(2) \cdots \mathrm{F}(6)]$; in o-fluorobenzoic acid the

[^2]O (carbonyl) $\cdots \mathrm{F}$ distance is $2.585 \AA$. The benzene ring itself is quite planar and the fluorine substituents show small deviations from its best plane (Table 3).

The overcrowding of the carboxy-group and the 0 methyl substituents in mesitoic acid is relieved primarily by an out-of-plane twist of 48.4° while from the crystal

Table 1

Atomic co-ordinates (fractional) and standard deviations referred to axes a, b, c
(a) Pentafluorobenzoic acid

Atom	x	y	z
$\mathrm{O}(1)$	$0 \cdot 19530(18)$	$0 \cdot 21005(17)$	$0 \cdot 10211(20)$
$\mathrm{O}(2)$	$0 \cdot 11307(19)$	$-0.06174(17)$	0-19119(22)
C(1)	$0 \cdot 39251(22)$	0.20416(21)	$0 \cdot 37744(24)$
$\mathrm{C}(2)$	$0 \cdot 56698(22)$	$0 \cdot 36987(21)$	$0 \cdot 35430(23)$
$\mathrm{C}(3)$	0.72766(21)	$0 \cdot 45416$ (21)	$0 \cdot 50690$ (25)
$\mathrm{C}(4)$	$0 \cdot 71656(23)$	$0 \cdot 37608(24)$	$0 \cdot 68742(25)$
C(5)	$0 \cdot 54671(24)$	$0 \cdot 21388(23)$	$0 \cdot 71596(24)$
$\mathrm{C}(6)$	$0 \cdot 38700(22)$	$0 \cdot 12930(22)$	$0 \cdot 56273(24)$
C(7)	$0 \cdot 22098(21)$	$0 \cdot 11394(21)$	0-20939(24)
$\mathrm{F}(2)$	$0.58668(14)$	$0 \cdot 45355(14)$	$0 \cdot 18346(15)$
$\mathrm{F}(3)$	$0 \cdot 89156(14)$	$0 \cdot 61280$ (15)	$0 \cdot 47795(18)$
F (4)	$0 \cdot 86892(15)$	$0 \cdot 45810$ (16)	$0 \cdot 83479(16)$
F (5)	$0 \cdot 53370$ (18)	$0 \cdot 13706(16)$	$0 \cdot 89138(16)$
F(6)	$0 \cdot 22505(15)$	$-0.02676(14)$	$0 \cdot 60234(17)$
$\mathrm{H}(1)$	-0.0077(57)	$-0.1222(49)$	$0 \cdot 0914(57)$

(b) Mesitoic acid

$\mathrm{O}(1)$	0.41806(6)	0.54952(12)	$0 \cdot 43075(5)$
$\mathrm{O}(2)$	$0 \cdot 45940$ (7)	$0 \cdot 27930$ (12)	$0 \cdot 48536$ (6)
C(1)	$0 \cdot 33525$ (7)	0.27337(13)	$0 \cdot 40104(5)$
$\mathrm{C}(2)$	$0 \cdot 35173$ (7)	$0 \cdot 10144(13)$	$0 \cdot 36254(6)$
$\mathrm{C}(3)$	$0 \cdot 28131$ (8)	$0.01004(15)$	$0 \cdot 32643$ (6)
C(4)	$0 \cdot 19624(8)$	$0 \cdot 08073$ (17)	$0 \cdot 32885$ (6)
C(5)	0.18193(8)	0.25077(16)	$0 \cdot 36714$ (6)
$\mathrm{C}(6)$	$0 \cdot 24958(7)$	$0 \cdot 35052(13)$	$0 \cdot 40288(5)$
$\mathrm{C}(7)$	$0 \cdot 40897$ (7)	$0 \cdot 37142(14)$	$0 \cdot 44208(6)$
C(8)	$0 \cdot 44291$ (9)	$0 \cdot 01482(21)$	$0 \cdot 35702(10)$
$\mathrm{C}(9)$	0.12038(12)	$-0.02355(33)$	$0 \cdot 29126(11)$
$\mathrm{C}(10)$	$0 \cdot 22780(10)$	$0.53429(17)$	$0 \cdot 44383$ (8)
${ }_{2}^{1} \mathrm{H}(1)$	$0 \cdot 4713(39)$	$0 \cdot 6060$ (85)	$0 \cdot 4654(33)$
$\frac{1}{2} \mathrm{H}(2)$	$0 \cdot 5021(43)$	$0 \cdot 3458(85)$	$0 \cdot 5056(41)$
$\mathrm{H}(3)$	$0 \cdot 4890$ (12)	$0 \cdot 1067(27)$	$0 \cdot 3401(10)$
$\mathrm{H}(4)$	$0 \cdot 4705$ (15)	-0.0302(32)	$0 \cdot 4128(13)$
$\mathrm{H}(5)$	$0 \cdot 4431$ (11)	$-0.0999(29)$	$0 \cdot 3208(11)$
$\mathrm{H}(6)$	$0 \cdot 2920$ (9)	-0.1048(20)	$0 \cdot 2993$ (8)
$\mathrm{H}(7)$	$0 \cdot 0650$ (17)	$0 \cdot 0161$ (34)	$0 \cdot 3212(15)$
$\mathrm{H}(8)$	$0 \cdot 1240$ (16)	$0 \cdot 0005(35)$	$0 \cdot 2351$ (16)
$\mathrm{H}(9)$	$0 \cdot 1291$ (17)	$-0 \cdot 1661(42)$	$0 \cdot 2958(14)$
$\mathrm{H}(10)$	0-1217(10)	0.2873(19)	$0 \cdot 3726(7)$
$\mathrm{H}(11)$	$0 \cdot 1646$ (12)	$0 \cdot 5445(22)$	$0 \cdot 4583(9)$
$\mathrm{H}(12)$	$0 \cdot 2467$ (11)	0.6416(25)	$0 \cdot 4124(10)$
$\mathrm{H}(13)$	$0 \cdot 2553(10)$	$0 \cdot 5341$ (25)	$0 \cdot 4969(12)$

structure analysis of o-toluic acid ${ }^{\mathbf{1 1}}$ the molecule is described as approximately planar (atomic co-ordinates were not listed). The benzene ring of mesitoic acid is planar to within $0.01 \AA$ (Table 3). The displacement of the carboxy-carbon $C(7)$ from this plane $(0.06 \AA$) is significant and is most likely to be due to the overcrowding of the carboxy-group and the o-methyl substituents. The deviation of $0.03 \AA$ of the p-methyl carbon $C(9)$ from the ring-plane may be due to intramolecular forces

[^3]Table 2
Observed thermal parameters and standard deviations $\left(\AA^{2}\right)$ referred to axes a, b, c

involving methyl hydrogen to aromatic hydrogen contacts.
Rigid-body Motion Analysis.-The thermal motion analysis (Schomaker and Trueblood) ${ }^{\mathbf{1 2}}$ was carried out,

Table 3
Equations of planes in the form $A x+B y+C z+D=0$ where x, y, z are fractional atomic co-ordinates; distances ($10^{3} \AA$) of relevant atoms from the planes are given in square brackets
(a) Pentafluorobenzoic acid

Plane (I):

$$
\begin{aligned}
& \mathrm{C}(1)-(6) \quad 5 \cdot 9781 x-6 \cdot 6965 y-2 \cdot 5448 z-0 \cdot 0158=0 \\
& \quad[\mathrm{O}(1)-515, \mathrm{O}(2) 587], \mathrm{C}(1) 3, \mathrm{C}(2)-5, \mathrm{C}(3) 3, \mathrm{C}(4) 0, \\
& \mathrm{C}(5)-2, \mathrm{C}(6) 0, \mathrm{C}(7) 10, \mathrm{~F}(2)-13, \mathrm{~F}(3)-6, \mathrm{~F}(4)-13, \\
& \mathrm{~F}(5)-11, \mathrm{~F}(6)-24] \\
& \text { Plane }(\mathrm{II}): \\
& \mathrm{C}(1), \mathrm{C}(7), \\
& \mathrm{O}(1), \mathrm{O}(2)-5 \cdot 7937 x+3 \cdot 1350 y+4 \cdot 2176 z+0.0420=0 \\
& {[\mathrm{O}(1)-1, \mathrm{O}(2)-1, \mathrm{C}(1)-1, \mathrm{C}(7) 2, \mathrm{H}(1) 89]}
\end{aligned}
$$

(b) Mesitoic acid

Plane (I) :

$$
\begin{aligned}
& \mathrm{C}(1)-(6) \quad-2 \cdot 2727 x-3 \cdot 5601 y+14 \cdot 7376 z-4 \cdot 1388=0 \\
& {[\mathrm{O}(1)-766, \mathrm{O}(2) 888, \mathrm{C}(1) 5, \mathrm{C}(2) 5, \mathrm{C}(3)-10, \mathrm{C}(4) 6,} \\
& \mathrm{C}(5) 4, \mathrm{C}(6)-9, \mathrm{C}(7) 60, \mathrm{C}(8)-17, \mathrm{C}(9) 30, \mathrm{C}(10) 0]
\end{aligned}
$$

Plane (II) :

$$
\begin{aligned}
& \mathrm{C}(1), \mathrm{C}(7), \mathrm{O}(2)-9 \cdot 2536 x+1 \cdot 3190 y+13 \cdot 5295 z-2 \cdot 6849=0 \\
& \mathrm{O}(1), \mathrm{O}(2) \\
& {\left[\mathrm{O}(1)-1, \mathrm{O}(2)-1, \mathrm{C}(1)-1, \mathrm{C}(7) 2, \frac{1}{2} \mathrm{H}(1) 50, \frac{1}{2} \mathrm{H}(2)-34\right]}
\end{aligned}
$$

not on the entire molecule of pentafluorobenzoic acid but on the more rigid $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{C}$ fragment, the oxygen atoms being excluded. The results are given in Table 4.
There is, in general, fairly good agreement between the observed and calculated thermal parameters $u^{i j}$ which were expressed in terms of the inertial frame of the $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{C}$ fragment (Table 4). However, the root-mean-square discrepancy of $\Delta u^{i j}$ is $0.0032 \AA^{2}$ which is large compared with the mean σ of the observed $u^{i j}$ $\left(0.0008 \AA^{2}\right)$. These values suggest that the $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{C}$ fragment does not behave as an ideal rigid body; the exocyclic $\mathrm{C}-\mathrm{F}$ and $\mathrm{C}-\mathrm{C}$ bonds undergoing independent vibrations. An excess libratory motion of the carboxygroup was indicated by the positive discrepancies [u^{33} (obs.) - u^{33} (calc.)] of the oxygen atoms.
Similarly, the rigid-body analysis of mesitoic acid was carried out on the $\mathrm{C}_{6} \mathrm{Me}_{3} \mathrm{C}$ fragment, the oxygens being excluded. The results are listed in Table 4.

The agreement between the observed and calculated thermal parameters $u^{i j}$ is fairly good. The root-meansquare discrepancy $\Delta u^{i j}$ is $0.0025 \AA^{2}$, while the mean σ of the observed $u^{i j}$ [Table $\left.2(b)\right]$ is $0.0007 \AA^{2}$. As in pentafluorobenzoic acid, the observed and calculated $u^{i j}$ indicate that the carboxy-group is not rigidly attached to the ring.
${ }^{12}$ V. Schomaker and K. N. Trueblood, Acta Cryst., 1968, B, 24, 63 .

TABLE 4

The components of the tensors and the unit vectors along their principal axes are referred to the axial systems of inertia (\boldsymbol{M}_{i}) defined below. The calculation is referred to the origin which symmetrises \boldsymbol{S} and reduces the trace of \boldsymbol{T}. The co-ordinates (\AA) of this origin in the inertial system with its origin at the centre of mass, are:
(a) Pentafluorobenzoic acid

$$
\begin{array}{ccc}
m_{1} & m_{2} & m_{3} \\
0.221 & -0.825 & -0.145 \\
0.627 & -0.169 & -0.241
\end{array}
$$

(a) Pentafluorobenzoic acid

Covariant components of the $\boldsymbol{M}_{\boldsymbol{i}}$ set

	x_{1}		x_{2}
\boldsymbol{M}_{1}	1.0555	$5 \cdot 4331$	$-4 \cdot 1870$
\boldsymbol{M}_{2}	$5 \cdot 0902$	-0.3456	$3 \cdot 9053$
\boldsymbol{M}_{3}	5.9814	-6.7054	-2.5344

Tensor elements $\times 10^{5}$			
Tensor	11	22	33
$\boldsymbol{L} /$ radian 2	$330(32)$	$641(39)$	$379(21)$
\boldsymbol{T} / \AA^{2}	$3633(107)$	$3216(103)$	$3945(165)$
$\boldsymbol{S} /$ radian $\times \AA$	$-21(47)$	$0(44)$	$21(64)$
\quad Tensor	12	23	13
$\boldsymbol{L} /$ radian 2	$-75(22)$	$-101(29)$	$14(28)$
\boldsymbol{T} / \AA^{2}	$-305(92)$	$112(111)$	$7(113)$
$\boldsymbol{S} /$ radian $^{2} \times \AA$	$-33(43)$	$-46(21)$	$-76(24)$

Root-mean-square amplitudes		Principal axes		
		m_{1}	$\overbrace{m_{2}}$	m_{3}
$\boldsymbol{L} /$ deg .	$4 \cdot 8$	$0 \cdot 1851$	-0.9364	0.2983
	$3 \cdot 5$	0.5572	-0.1500	-0.8167
	$3 \cdot 1$	$0 \cdot 8095$	$0 \cdot 3174$	$0 \cdot 4940$
\boldsymbol{T} / \AA	$0 \cdot 199$	-0.1737	$0 \cdot 2137$	0.9613
	$0 \cdot 194$	-0.8717	$0 \cdot 4208$	-0.2510
	$0 \cdot 174$	-0.4582	-0.8816	0.1132

(b) Mesitoic acid

Covariant components of the \boldsymbol{M}_{i} set

		x_{1}	x_{3}
\boldsymbol{M}_{1}	11.4056	3.3662	$7 \cdot 7110$
\boldsymbol{M}_{2}	9.5804	-5.0242	$-5 \cdot 3081$
\boldsymbol{M}_{3}	2.7235	3.5766	-14.7137

Tensor elements $\times 10^{5}$			
Tensor	11	22	33
$\boldsymbol{L} /$ radian 2	749(35)) $561(23)$	457(17)
\boldsymbol{T} / \AA^{2}	$5722(86)$	5790(91)	4174(131)
$\boldsymbol{S} /$ radian $\times \AA$	$-38(45)$	- $156(49)$	194(67)
Tensor	12	23	13
L/ radian 2	$-84(37)$	36(24)	84(30)
\boldsymbol{T} / \AA^{2}	868(80)	469(93)	-46(101)
$\mathbf{S} /$ radian $\times \AA$	$85(38)$) 54(22)	20(19)
Root-mean-square amplitudes		Principal axes	
		$m_{1}-\hat{m_{2}}$	m_{3}
L/deg.	$5 \cdot 1$	$-0.9315 \quad 0.3045$	-0.1992
	$4 \cdot 3$	$-0.1884-0.8718$	-0.4521
	$3 \cdot 7$	$-0.3113-0.3836$	$0 \cdot 8694$
\boldsymbol{T} / \AA	0.258	$-0.6691-0.7324$	-0.1257
	$0 \cdot 224$	$-0.7178 \quad 0.5933$	$0 \cdot 3644$
	0.200	-0.1923 0.3340	-0.9227

The bond lengths of both structures corrected for libratory motion are shown in Figure 4.

Bond Lengths and Bond Angles.-The bond lengths
and bond angles of pentafluorobenzoic acid are shown in Figure 4. Their mean σ values are $0.002 \AA$ and 0.14° respectively. A measure of precision of these bond parameters may also be derived from a comparison of

Figure 4 Pentafluorobenzoic acid: (a) bond lengths (\AA), with values corrected for thermal vibration in parentheses; and (b) bond angles (${ }^{\circ}$)
the 'chemically equivalent' halves of the $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{C}$ group, leading to a mean 'scatter' of $0.003 \AA$ and 0.1°.

The benzene ring, which conforms to m symmetry about the line $C(1) \cdots C(4)$, shows a systematic trend in bond lengths. The bonds adjacent to the carboxygroup $[\mathrm{C}(1)-\mathrm{C}(2)$ and $\mathrm{C}(1)-\mathrm{C}(6)]$, are the longest, mean $1.392 \AA$; the length of the adjoining bonds $\mathrm{C}(2)-\mathrm{C}(3)$ and $\mathrm{C}(6)-\mathrm{C}(5)$, is $1.384 \AA$; and the remaining bonds $\mathrm{C}(3)-\mathrm{C}(4)$ and $\mathrm{C}(4)-\mathrm{C}(5)$ are the shortest ($1.371 \AA$). This trend could hardly be an artefact caused by the libratory motion of the molecule for the bond lengths show the same variation after correction for rigid-body motion (Figure 4). These differences in aromatic bond lengths may be due, in the main, to non-bonded repulsions between the carboxylic oxygens and the phenyl ring, which induce a stretching of the $\mathrm{C}(1)-\mathrm{C}(2)$ and $\mathrm{C}(1)-\mathrm{C}(6)$ bonds. The role of non-bonded repulsions between adjacent atoms in determining bond lengths has been strongly stressed, ${ }^{13}$ and bond length variation in a number of overcrowded compounds ${ }^{14,15}$ has been interpreted along these lines.

[^4]With regard to the fluorine substituents, all the C-F bonds, except the para-substituted $\mathrm{C}(4)-\mathrm{F}$ bond, are equal in length to within $0.002 \AA$. The mean $\mathrm{C}-\mathrm{F}$ bond length ($1 \cdot 331$) compares well with the literature value ($1.328 \AA$). ${ }^{16}$ The bond lengths of the carboxy-group are discussed later.

Figure 5 Mesitoic acid: (a) bond lengths (\AA), with values corrected for thermal vibration in parentheses; and (b) bond angles $\left({ }^{\circ}\right)[\mathrm{C}(4)-\mathrm{C}(9)-\mathrm{H}(8) 107, \mathrm{H}(7)-\mathrm{C}(9)-\mathrm{H}(9) 110, \mathrm{H}(11)-$ $\mathrm{C}(10)-\mathrm{H}(13) 99$, and $\left.\mathrm{C}(6)-\mathrm{C}(10)-\mathrm{H}(12) 109^{\circ}\right]$

The bond lengths and bond angles of mesitoic acid are shown in Figure 5. The σ values for heavy atoms only are $0.002 \AA$ and $0 \cdot 10^{\circ}$. The corresponding values involving a hydrogen atom are $0.03 \AA$ and $1 \cdot 5^{\circ}$. A comparison of the 'chemically equivalent ' halves of the carbon skeleton leads to a mean 'scatter' in bond length and angle of $0.004 \AA$ and 0.15°.

The aromatic bonds adjacent to the carboxy-group, mean $1.406 \AA$, are $0.02 \AA$ longer than the other ring bonds which in themselves match to within their mean

[^5]by $0.004 \AA$. This variation in aromatic bond length is probably significant and, as in pentafluorobenzoic acid, may be attributed to the non-bonded repulsions between the carboxy-group and the neighbouring phenyl atoms inducing a stretching of the $\mathrm{C}(1)-\mathrm{C}(2)$ and $\mathrm{C}(1)-\mathrm{C}(6)$ bonds. Indeed, for the same reason, we may account for the fact that the ortho $-\mathrm{C}-\mathrm{CH}_{3}$ methyl bonds are $0.009 \AA$ longer than the para- $\mathrm{C}-\mathrm{CH}_{3}$ methyl bond. The symmetric and tetrahedral nature of the methyl groups is illustrated by the mean $\mathrm{C}-\mathrm{H}$ bond length and bond angle at the methyl carbon of $1.02 \AA$ and 109°, and their respective ' scatters' of $0.03 \AA$ and 5°.

Table 5
Molecular dimensions of a number of methyl-substituted benzoic acids

Bond	2,4,6-triMe	2,4,6-triMe ${ }^{\text {a }}$	2,6-diMe ${ }^{\text {b }}$	3,4,5-triMe ${ }^{\text {c }}$
$\mathrm{C}(7)-\mathrm{O}(1)$	1.275 §	$1.286 \AA$	$1.276 \AA$	$1.287 \AA$
$\mathrm{C}(7)-\mathrm{O}(2)$	$1 \cdot 248$	$1 \cdot 250$	$1 \cdot 226$	$1 \cdot 251$
$\mathrm{C}(1)-\mathrm{C}(7)$	1.488	1.491	1-525	1.472
$\mathrm{C}(1)-\mathrm{C}(2)$	1.407	1.382	$1 \cdot 403$	1.400
$\mathrm{C}(6)-\mathrm{C}(1)$	$1 \cdot 406$	1.395	$1 \cdot 399$	$1 \cdot 397$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1 \cdot 384$	1.398	$1 \cdot 399$	1-394
$\mathrm{C}(5)-\mathrm{C}(6)$	$1 \cdot 390$	$1 \cdot 402$	$1 \cdot 395$	1.400
$\mathrm{C}(3)-\mathrm{C}(4)$	1-387	$1 \cdot 390$	$1 \cdot 396$	1.391
$\mathrm{C}(4)-\mathrm{C}(5)$	$1 \cdot 382$	$1 \cdot 380$	1-394	1.410
$\mathrm{C}(6)-\mathrm{CH}_{3}$	1.513	1.538	$1 \cdot 519$	
$\mathrm{C}(2)-\mathrm{CH}_{3}$	1.514	1.547	1.531	
$\mathrm{C}(4)-\mathrm{CH}_{3}$	1.506	1.533		1.526
$\mathrm{C}(3)-\mathrm{CH}_{3}$				1.523
$\mathrm{C}(5)-\mathrm{CH}_{3}$				1.516
$\mathrm{O}-\mathrm{H} \cdot \mathrm{O}$	$2 \cdot 640$	$2 \cdot 648$	$2 \cdot 673$	$2 \cdot 628$
Plane angle ${ }^{d}$	$48^{\circ} 27^{\prime}$	$48^{\circ} 29^{\prime}$	$53^{\circ} 31^{\prime}$	$5^{\circ} 6^{\prime}$

${ }^{a}$ Ref. 2. ${ }^{b}$ Ref. 17. a Ref. 18. a Angle between the benzene and carboxy-group planes.

Table 5 lists the bond lengths of mesitoic acid determined by Florencio and Smith ${ }^{2}$ as well as those of the present analysis. The bond lengths of 2,6 -dimethylbenzoic acid ${ }^{17}$ and $3,4,5$-trimethylbenzoic acid ${ }^{18}$ are also included.

Carboxy-pair and Packing.-The molecules of pentafluorobenzoic acid form hydrogen-bonded pairs ($\mathrm{O}-\mathrm{H} \cdots \mathrm{O}, 2 \cdot 668 \AA$) as shown in the packing diagram (Figure 6). These hydrogen-bonded carboxy-groups are not fully coplanar, being offset $0.09 \AA$.
The $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}-\mathrm{OH}$ bond lengths (1.228 and $1.278 \AA$) and the presence of the hydroxy-hydrogen on the difference-Fourier electron-density map (Figure 1) indicate that the carboxy-pair does not exhibit appreciable orientational disorder in the crystal lattice, the lack of which must be attributed to intermolecular forces in view of the mm symmetry of the $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{C}$ fragment. An examination of the packing normal to the best plane of the carboxy-dimer [Figure $6(\mathrm{a})$] reveals

[^6]differences in environment of the carbonyl- and hydroxyoxygen atoms, in particular the contact approach directly above the plane of the dimer. However, we are not able, at this stage, to state with any degree of certainty which are the decisive intermolecular contacts

Figure 6 Pentafluorobenzoic acid: (a) packing environment about the shaded centrosymmetric hydrogen-bonded carboxypair, showing some intermolecular distances (\AA). (b) Packing arrangement seen along [001]. $\quad b^{\prime}=b \sin \alpha$
maintaining the orientation of the carboxy-dimer. Intermolecular distances are listed in Table 6.

The molecules of mesitoic acid form cyclic pairs linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds ($2 \cdot 640 \AA$) (Figure 7). These hydrogen-bonded carboxy-groups are not fully coplanar, being offset $0 \cdot 10 \AA$. The observed lengths of

Table 6
Interatomic distances ($\leq 3.70 \AA$)
(a) Pentafluorobenzoic acid

* Co-ordinates of equivalent positions:

$$
A x, y, z \quad A-x,-y,-z
$$

$A(p q r)$ Denotes fractional co-ordinates $p+x, q+y, r+z$.
(b) Mesitoic acid

$A(000) \dagger$ (000)		C(4) .	$\mathrm{H}(6)$	$3 \cdot 15$
$\mathrm{O}(1) \cdots \mathrm{H}(13)$	$2 \cdot 73$	C(5) .	H(6)	$3 \cdot 11$
$\mathrm{O}(1) \cdots \mathrm{O}(2)$	$2 \cdot 211$	C(1) .	H(8)	2.93
$\mathrm{O}(1) \cdots \mathrm{H}(12)$	$2 \cdot 69$			
$\mathrm{O}(1) \cdots \mathrm{C}(10)$	$2 \cdot 894$	$A(000)$	$B(000)$	
$\mathrm{O}(1) \cdots \mathrm{C}(6)$	2.945	$\mathrm{O}(1) \cdots$	$\mathrm{H}(9)$	2.96
$\mathrm{O}(\mathrm{l}) \cdots \mathrm{C}(1)$	$2 \cdot 364$	C(7) .	$\mathrm{H}(9)$	$3 \cdot 34$
$\mathrm{C}(7) \cdots \mathrm{C}(10)$	$2 \cdot 973$			
$\mathrm{C}(7) \cdots \mathrm{C}(8)$	$2 \cdot 960$	$A(000)$	B(10)	
$\mathrm{O}(2) \cdots \mathrm{C}(8)$	$2 \cdot 918$	C(9) .	H(3)	$3 \cdot 39$
$\mathrm{O}(2) \cdots \mathrm{C}(2)$	$2 \cdot 954$			
$\mathrm{O}(2) \cdots \mathrm{C}(1)$	$2 \cdot 374$	$A(000)$	$A(010)$	
$\mathrm{O}(2) \cdots \mathrm{H}(4)$	$2 \cdot 52$	$\mathrm{O}(1) \cdots$	$\mathrm{H}(4)$	3.08
$\mathrm{O}(2) \cdots \mathrm{H}(3)$	$2 \cdot 85$	$\mathrm{O}(1) \cdots$	H(5)	$3 \cdot 15$
$\mathrm{C}(5) \cdots \mathrm{H}(9)$	$2 \cdot 54$	$\mathrm{O}(1) \cdot$	C(8)	3.535
$\mathrm{C}(5) \cdots \mathrm{H}(8)$	$3 \cdot 02$			
$\mathrm{C}(4) \cdots \mathrm{H}(8)$	2.04	$A(000)$	$\bar{B}(011)$	
$\mathrm{C}(4) \cdots \mathrm{H}(7)$	$2 \cdot 09$	$\mathrm{C}(10)$	H(13)	$3 \cdot 21$
$\mathrm{C}(4) \cdots \mathrm{H}(9)$	$2 \cdot 04$			
$A(000) \quad A(0 \overline{1} 0)$		$\begin{aligned} & A(000) \\ & \mathrm{O}(2) \cdots \end{aligned}$	$\begin{aligned} & A(101) \\ & \cdot \mathrm{H}(4) \end{aligned}$	$2 \cdot 702$
$\mathrm{C}(4) \cdot \cdots \mathrm{H}(12)$	$3 \cdot 49$			
$\mathrm{C}(3) \cdots \mathrm{H}(12)$	$3 \cdot 04$	$\begin{aligned} & A(000) \\ & \mathrm{O}(1) \cdots \end{aligned}$	$\begin{aligned} & A(111) \\ & \cdot \mathrm{O}(2) \end{aligned}$	$2 \cdot 640$
$A(000) \quad B(0 \mathrm{I} 0)$				
$\mathrm{C}(8) \cdots \mathrm{H}(10)$	$3 \cdot 15$	$A(000)$	$\bar{B}(001)$	
$A(000) \quad A(010)$		$\mathrm{O}(2) \cdots$ $\mathrm{O}(2) \cdot$	$\mathrm{C}(5)$ $\mathrm{H}(10)$	$3 \cdot 371$ $2 \cdot 82$
$\mathrm{O}(1) \cdots \mathrm{H}(3)$	$3 \cdot 08$	$\mathrm{O}(2) \cdots$	H(11)	$3 \cdot 12$
$\mathrm{O}(1) \cdots \mathrm{H}(5)$	$3 \cdot 15$	C(1) .	C(10)	$3 \cdot 600$
		C(1) \cdots	H(13)	$3 \cdot 13$
$A(000) \quad \bar{D}(000)$		C(3) .	H(13)	$3 \cdot 15$
$\mathrm{O}(1) \cdots \mathrm{H}(8)$	$2 \cdot 97$	C(2) \cdot	H(13)	3•10

\dagger Co-ordinates of equivalent positions:

$$
\begin{array}{ll}
A x, y, z & C x,-y, \frac{1}{2}+z \\
B \frac{1}{2}+x, \frac{1}{2}+y, z & D \frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z
\end{array}
$$

Where A is $\bar{x}, \bar{y}, \bar{z}$ etc.; $A(p q r)$ denotes fractional co-ordinates $p+x, q+y, r+z$.

$012 \AA$

Figure 7 Mesitoic acid: (a) packing environment seen perpendicular to the best plane of the carboxylic acid dimer of the shaded molecules showing some intermolecular contacts (\AA). (b) Packing arrangement seen along [010]
the $\mathrm{C}-\mathrm{O}$ bonds ($1.24 \Omega, 1.275 \AA$), and the differenceFourier electron-density map in the plane of the carboxy-group indicate that the carboxy-pair displays partial orientational disorder in the crystal lattice. This effect is most likely to be due to the presence of the o-methyl groups which are related by approximate two-fold symmetry, and which would provide similar contact geometry (Figure 8) for the carboxy-group in its two equivalent orientations (I) and (II). Furthermore, the oxygen atoms are partially shielded from intermolecular contacts [Table $6(b)$] by the o-methyl groups. The extent of shielding is dependent upon the degree of coplanarity of the carboxy-group with the benzene ring; the larger the angle of twist, the more exposed are the oxygen atoms.

Figure 8 Mesitoic acid: environment of the carboxy-group as seen along the molecular pseudo-two-fold axis; $\mathrm{O} \cdots \mathrm{H}$ intramolecular contacts (\AA) are given

The angle of twist in 2,6-dimethylbenzoic acid is 53.5° and yet its $\mathrm{C}-\mathrm{O}$ bond lengths (Table 5) are 1.276 and $1.226 \AA$ which indicate less orientational disorder than in mesitoic acid. Perhaps this is correlated with the somewhat greater angle of twist of the carboxygroup in the former. In addition the methyl hydrogens in 2,6-dimethylbenzoic acid were not determined and so we are not aware of the extent to which the two methyl groups are related by molecular two-fold symmetry, and hence its effect on the stabilisation of the orientation of the carboxy-group.

We acknowledge partial support of this work, by a Minerva grant.
[1/1292 Received, 26th July, 1971]

[^0]: ${ }^{1}$ Part VIII, V. Benghiat and L. Leiserowitz, preceding paper.

[^1]: ${ }^{2}$ F. Florencio and P. Smith, Acta Cryst., 1970, B, 26, 659.
 ${ }^{3}$ P. Coppens, L. Leiserowitz, and D. Rabinovich, Acta Cryst., 1965, 18, 1035.

[^2]: * For details see Notice to Authors No. 7 in J. Chem. Soc. (A), 1970, Issue No. 20 (items less than 10 pp . are supplied as full size copies).

 $$
 7 \text { R. McWeeny, Acta Cryst., 1951, 4, } 513 .
 $$

 ${ }^{8}$ J. Berghius, IJ. M. Haanappel, M. Potters, B. O. Loopstra, C. H. MacGillavry, and A. L. Veenendaal, Acta Cryst., 1955, 8, 478.

[^3]: ${ }^{9}$ A. J. Freeman, Acta Cryst., 1959, 12, 261.
 10 J. Krausse and H. Dunken, Acta Cryst., 1966, 20, 67;
 G. Ferguson and K. M. S. Islam, Acta Cryst., 1966, 21, 1000.
 ${ }^{11}$ C. Katayama, A. Furusaki, and I. Nitta, Buil. Chem. Soc. Japan, 1967, 40, 1293.

[^4]: ${ }^{13}$ L. S. Bartell, Tetrahedron, 1962, 17, 177.
 14 A. W. Hanson, Acta Cryst., 1962, 15, 956.
 15 M. Mathew, Acta Cryst., 1968, B, 24, 530.

[^5]: ${ }^{16}$ Chem. Soc. Special Publ., No. 11, 1958.
 ${ }_{17}$ R. Ance, S. Martinez-Carrera, and S. Garcia-Blanco, Acta Cryst., 1967, 23, 1010.

[^6]: ${ }^{18}$ F. H. Cano, S. Martinez-Carrera, and S. Garcia-Blanco, Acta Cryst., 1970, B, 26, 972.

